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Resumo 

 

Pós de cobre esféricos são essenciais nos processos de manufactura aditiva de componentes 

metálicos. Estes processos requerem um elevado escoamento resultante da esfericidade das 

partículas. Além disto, componentes obtidos a partir de pós podem apresentar porosidade residual ou 

porosidade controlada. Os testes de dureza permitem avaliar a resistência de corpos metálicos a 

deformações plásticas que dependem da porosidade da peça. 

Os principais objectivos deste trabalho são propor um modelo de dureza dependente da porosidade, 

usando o método dos elementos finitos (MEF), e desenvolver um método de esferoidização de pós que 

permita a criação de corpos com porosidade controlada. Para o primeiro caso, foi simulado um teste 

de dureza Brinell em corpos de cobre puro. Para o segundo caso, pós de cobre electrolíticos 

(dendríticos) foram submetidos a um processo de esferoidização no estado líquido. 

Os pós de cobre foram esferoidizados num forno de resistência de grafite, sob vácuo, num leito de 

grafite em pó, num molde de grafite, segundo uma abordagem de fusão in situ. As variáveis analisadas 

foram: temperatura, tempo de permanência, peso aplicado e fracção mássica de cobre-grafite. Os dois 

pós utilizados foram separados numa solução aquosa de ácido clorídrico aquecida. As amostras foram 

caracterizadas por MEV e EDS. Verificou-se que as partículas esferoidizadas numa mistura com grafite 

do tipo KS4, com uma proporção de cobre-grafite de 1:1, a 1100ºC durante 30 minutos, sob uma 

pressão reduzida, obtiveram os melhores valores relativos ao factor de forma (1.55±0.46). 

Realizaram-se simulações de ensaios de dureza, pelo MEF, para estudar a influência da porosidade e 

do rácio carga/diâmetro do indentador (F/D²) na dureza Brinell. O corpo poroso de cobre foi criado de 

acordo com o modelo GTN. Obteve-se uma relação linear entre a dureza de Brinell e a porosidade do 

corpo.  Para cobre, com uma fracção volúmica de poros entre 0 e 0.1, os resultados da simulação da 

dureza Brinell podem ser escritos numa só equação,  𝐵𝐻𝑁 = 74,9 ∙ (𝐹/𝐷2)ℎ
−0,065

− 187,7 ∙ 𝑉𝑉𝐹 ∙

(𝐹/𝐷²)ℎ
−0,215

, em que (F/D²) é o rácio F/10D² adimensional e VVF a fracção volúmica de poros. Ocorre 

densificação do corpo poroso na região de indentação. Verificou-se a ocorrência de “pile-up”, sendo 

este máximo para um rácio F/D² de 10 kgf/mm² num corpo com 0% de porosidade. 

 

Palavras-chave: pós esféricos; cobre; grafite; método dos elementos finitos; dureza; porosidade 
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Abstract 

 

Spherical powders are essential for additive manufacturing of metallic components. These processes 

require high powder flowability provided by particles with spherical shape. Also, powder made 

components are prone to develop residual porosity or can be developed with controlled porosity. 

Hardness testing is a rapid tool to access resistance to plastic flow of metallic materials. This resistance 

depends on component porosity.  

This work proposes to model the hardness dependence on porosity using finite element experiments. It 

also proposes a method to develop spherical powders usable to produce model materials with controlled 

porosity. Pure copper and Brinell hardness testing were selected for the FEM experiments. Electrolytic 

dendritic copper powders were select for the liquid metal spheroidization process. 

Spheroidization was carried out using a non-wettable graphite powder bed, using an in situ melting 

solidification process. Copper powders were heat treated in a primary vacuum furnace using a graphite 

powder bed and graphite dies. The analysed variables were temperature, holding time, copper/graphite 

mass ratio (CGR) and applied stress. Copper was separated from the mixture using a warm hydrochloric 

acid aqueous solution. The samples were characterized by SEM and EDS. The best spheroidization 

shape factor, 1.55±0.46, was achieved for copper powders processed at 1100ºC for 30 minutes, with 

low applied stress, in a mix with graphite KS4 and a CGR of 1:1. 

FEM simulations were carried out to study the influence of porosity and load/indenter size ratio, F/D² 

ratio, on materials hardness. The GTN model was used to simulate a porous copper body. A direct linear 

relationship was observed between Brinell hardness and relative density. For copper, and for a void 

volume fraction (VVF) between 0 and 0.1, Brinell hardness simulation results can be expressed in a 

single equation, 𝐵𝐻𝑁 = 74,9 ∙ (𝐹/𝐷2)ℎ
−0,065

− 187,7 ∙ 𝑉𝑉𝐹 ∙ (𝐹/𝐷²)ℎ
−0,215

, where (F/D²)
h
 is the F/10D2 

dimensionless ratio and VVF the void volume fraction. Both densification, in the region beneath the 

indenter, and pile-up, at the periphery of the indentation, were observed. Pile-up was maximum for a 10 

kgf/mm² F/D² ratio and 0% porosity. 

Keywords: spherical powders; copper; graphite; finite element method; hardness; porosity 
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1. Introduction 
 

Numerous industrial applications where metal powders play a key role require particles with increasingly 

better flowability for processes where this parameter is critical, such as additive manufacturing and metal 

powder injection. These powders are better suited for the production of parts with controlled porosity 

than other produced by water atomization or electrolysis, facilitating the experimental validation of 

numerical simulation models. 

The present work has two main goals: study and optimize a powder spheroidization process (liquid-solid 

method) through the use of a graphite powder bed that promotes local non-wettability regions between 

copper and graphite; serve as an introduction to the use of the finite element method (FEM) for hardness 

test simulations. The capabilities of this method can be useful to predict and explain experimental results 

in both dense and porous materials. Working with a model that successfully recreates reality also 

provides a reliable background for the development and improvement of constitutive equations for 

plastic flow in porous materials. 

This work was structured into three parts. The first part studies the production of spherical copper 

powders from dendritic powders. The second part relates to the characterization of the spherical copper 

powders. The last part concerns the FEM study of the hardness test and comparison is made between 

a pore-free and a porous copper material. 

This thesis is divided into 6 sections. The present introduction is section 1. Section 2, State of the Art, 

is where literature on copper powder production methods, spherical powder production and applications, 

hardness tests and FEM modelling is reviewed. Section 3, Experimental methods and techniques, 

presents the experimental methods and techniques as well as the materials used in this work. Section 

4, Experimental results and discussion, presents the experimental results and the analysis of the 

spheroidization process. On section 5, Modelling, the parameters and set-up for the creation of the 

computational model are presented together with the simulation results. Section 6, Conclusions, offers 

a compilation of both the experimental and computational results and the final conclusions, along with 

suggestions on further developments. 
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2. State of the Art 
 

In this chapter, the properties, production methods and applications of copper powders are introduced, 

as well as the processes of spheroidization of these powders. The hardness test modelling is reviewed, 

with detail given to the Finite Element Method. 

 

2.1. Copper 
 

Copper is a metallic material with high thermal and electrical conductivity which stands atop many other 

materials as reported in Table 1 [1]. This, coupled with its effectiveness as a catalyst, resistance to 

corrosion and good strength and fatigue resistance [2][3] makes copper a sought after material for 

several applications, which includes electrical components, filters, brushes, catalysts and structural 

parts [1][2][4]. 

 

Table 1 - Comparison between materials used in electrical contacts in terms of electrical, thermal and mechanical 

properties [1]. 

Material Density (g/cm3) ρ (10-8 Ωm) λ (W/(mºC)) E (GPa) 

Copper 8.9 1.75 380 120 

Gold 19.3 2.3 310 84 

Silver 10.5 1.65 418 75 

Platinum 21.4 11.7 70 154 

Tungsten 19.3 5.5 190 350 

Iron 7.8 10 60 200 

Aluminium 2.7 2.9 210 72 

Graphite 1.8 700 160 3 

 

 

2.1.1.  Copper Powders 
 

Metal powders are defined as metals or alloys in the form of particles, with sizes usually smaller than 1 

mm [5]. Powder metallurgy (PM) enables the mass production of metallic parts with a near-net shape at 

a low cost, without the defects associated with traditional metallurgical processes such as casting, like 

blow holes, shrinkage and inclusions [4][6].  

The first copper powder metallurgy parts date back to the early 1920’s with bronze self-lubricating 

bearings being used in the automotive industry. In the 1930’s the production of electrolytic copper 

powders enabled the development of copper-graphite electrical brushes. With the advents of the Second 

World War and the consequent development of the metallic industry, copper powder production had 
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another surge with the metal being added for alloy strengthening [4]. Nowadays, the main consumers 

of PM parts are the automotive industries, followed by the electronics industry sector. 

In 2014, the European Commission reported that the turnover of PM parts was over 6 billion euros per 

year. The same document identifies the sectors addressing the development needs for research on the 

topic: transportation, electronics, energy, consumer goods and tooling. The mid-term objective for the 

EU (for 2020) is set on powder processing and metallurgy, while the long term vision (2050) is set on 

the development of suitable powders for additive manufacturing [7]. The market size of this area of PM 

is predicted to grow at an average rate of 23% until 2025, as shown in Figure 1 [8]. 

 

Figure 1 – Additive manufacturing market growth forecast for 2025 showing the demand for powders that suit this 

process [8]. 

 

With such a revenue forecast for the upcoming years, driven by the need of the industries related with 

the energy sector, research on copper powders and its applications is an area of increasingly greater 

interest. 
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2.1.2.  Copper powder production methods 
 

The main copper powder production methods are atomization, oxide reduction, hydrometallurgy and 

electrolysis. The starting powders used in this work were produced by electrolysis and for this reason, 

this specific process will be the focus of this section. 

The production of powders by electrolysis is a processing method with low capital investment and 

operational costs. It yields high purity powders when compared with other methods, with copper 

composition ranging from 99.1 to 99.8 wt%, and oxygen content ranging from 0.1 to 0.8 wt% [4]. 

Table 2 – Comparison between different copper production methods with respect to composition and powder 

morphology. 

Type of powder 
Composition (wt%) 

Powder Morphology 
Copper Oxygen 

Electrolytic 99.1-99.8 0.1-0.8 Dendritic 

Oxide reduced 99.3-99.6 0.2-0.6 Irregular 

Water reduced 99.3-99.7 0.1-0.3 Irregular to spherical 

 

Table 2 shows a comparison between the major processes utilized in the production of copper powders. 

Copper electrolysis is carried out in an electrolytic bath on which an electric current is applied between 

an anode and a cathode. The anode is connected to the positively charged pole whereas the cathode 

is connected to the negatively charged pole. Copper oxidation will occur at the anode, with consequent 

production of copper ions (Cu2+) that will migrate across the electrolyte towards the cathode. At the 

cathode, copper ions will be reduced. As a consequence, powders are deposited on the cathode, and 

are later removed with a brush [6]. The reactions on each of the poles are described by equations (1) 

(anode reaction) and (2) (cathode reaction) [9]. 

 𝐶𝑢 →  𝐶𝑢+2 + 2𝑒− (1) 

 𝐶𝑢+2 + 2𝑒−  →  𝐶𝑢 (2) 

 

The distance between the anode and the cathode influences the size and amount of powders produced. 

When the distance increases the particle’s size increases. However, increasing the distance between 

the anode and the cathode leads to a lower amount of copper particles [9]. 

The electrolytic bath consists of copper sulphate, sulphuric acid (provides hydrogen ions that improve 

bath conductivity) and distilled water [9]. The anode is usually made of electrolytically refined copper, 

and the cathode of a lead alloy sheet [4]. 
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Table 3 - Typical conditions for the production of electrolytic copper powder [4]. 

Parameter Value 

Copper concentration 5-15 g/L 

Sulphuric acid concentration 150-175 g/L 

Temperature 25-60 ºC 

Anode current density 430-550 A/m2 

Cathode current density 700-1100 A/m2 

Cell potential 1.0-1.5 V 

 

The typical conditions employed in the production of electrolytical grade copper powders are specified 

in Table 3. The parameters detailed in the table are the ones which most influence the produced 

powder’s properties. 

Copper powder production is favoured by low electrolytic copper ion concentration, and high acid 

content. At higher electrolyte temperatures the powders become coarser and the current efficiency is 

increased, which causes a drop in terms of cell voltage [4]. 

Studies on the effects of process parameters indicate that powder’s size increase with removal time and 

the increase in distance between the anode and the cathode; a current density increase leads to 

powders with lower sizes [9]. Copper powders produced by electrolysis exhibit a dendritic morphology 

at the end of the process. 

 

2.2. Wettability and surface tension 
 

Liquids tend to adopt shapes that minimize their surface area, so that the maximum number of atoms 

are in the bulk interacting with neighbours. Therefore, in the absence of gravity, droplets tend to be 

spherical, since a sphere is the shape with the smallest surface-to-volume ratio. The resulting area-

reduction phenomenon leads to the concept of surface tension (𝛾) which is the work needed to change 

the surface area of a sample by an infinitesimal amount [10]. 

The surface tension of a liquid can be measured with many methods. One of them, the sessile drop 

method allows for the measurement of surface tension of liquid by applying Young’s equation for the 

balance between interfaces. In this method, a liquid drop is placed on a flat substrate and its profile 

image is acquired [11]. The contact angle (θ) obtained from the profile image will be used to calculate 

the surface tension. 

The contact angle (θ) derives from a balance of surface tensions between solid-vapor (𝛾𝑆𝑉), solid-liquid 

(𝛾𝑆𝐿) and liquid-vapor (𝛾𝐿𝑉) interfaces, according to the Young equation (3) [12][13]. 

 𝑐𝑜𝑠𝜃 =
𝛾𝑆𝑉 − 𝛾𝑆𝐿

𝛾𝐿𝑉

 (3) 
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A liquid is said to fully wet a solid when its contact angle is zero, with the liquid spreading over the solid. 

If the contact angle is higher than 90 degrees, the liquid will ball-up thus not wetting the surface [12], as 

depicted in Figure 2 [14]. 

 

 

2.3. Spherical Powders 

 

The development of powder metallurgy, three-dimensional printing and metal injection moulding has led 

to a specific need for spherical powders, with fine particle size and smooth particle surface. The 

powder’s shape and reduced size allow for a better compaction and therefore a better densification 

when sintering [15]. These benefits prompt increasing demand of spherical powders for part production. 

In order to mass produce spherical powders it is necessary to control the particle’s size distribution and  

process reproducibility [16]. 

Spherical particles can be produced by several processes. Gas atomization is a method that allows for 

fine grain size, spherical and clean (low oxygen content) particles. In this production method, a liquid 

metal stream is disintegrated by means of a impinging jet of gas (usually argon or nitrogen) [17][18]. 

Despite providing spherical particles, price is still an obstacle to more widespread use, due to labour 

costs and plant capacity [19]. This presents an opportunity for the development of a process that allows 

one to obtain spherical powders with lower adjacent costs with no further add-ons to the process. 

An approach proposed by Zhenzhi Cheng et al [20] rests on the principles of non-wettability. It consists 

on using a powder bed of graphite to separate the metallic particles, preventing contact between them. 

By surrounding the copper particles with graphite platelets it is possible to create a local region where 

the spheroidization will occur [15], [21], [22]. This method is depicted in Figure 3, and was named LS, 

liquid-solid method, by the authors [23].  

 

Figure 2 – Droplet morphology variation with contact angle [14]. Example of the sessile drop method. 
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Graphite’s surface energy, at temperatures between 1000 and 2000 K varies from 25 to 95 mJ/m² [24]. 

As for liquid copper, for temperatures ranging from 1375 to 1525 K, its surface energy is over ten times 

that of graphite, ranging from 1358 to 1243 mJ/m², respectively [11][25][26]. The wettability of carbon 

by copper and its alloys show a contact angle of approximately 135º [27], establishing that there is no 

wetting behaviour between them. Introducing the previously presented parameters in equation (3) 

theoretically predicts the non-wetting behaviour. 

The LS method takes advantage of the low wettability of the Cu-Graphite solid-liquid interface [20]. 

Results show complete spheroidization of the initial particles, with a particle’s size growth up to twice 

the initial diameter, and few to none impurities (with oxygen content of only 0.048 wt%) [20]. As for 

carbon impurities low values were recorded, 0.0053 wt%, which is supported by the fact that this element 

has low solubility in copper [28].  

 

2.4. Modelling 

 

2.4.1.  Finite Element Model 

 

ABAQUS (the software used in this project) enables self-learning and allows for autonomous work on 

numerical modelling. Nonetheless, it is important to understand the theoretical background behind the 

Finite Element Method. By doing so, it is possible to better understand the results and issues related to 

the use of the software. 

The Finite Element Method, as proposed by Reddy, has three fundamental steps which are: dividing the 

whole domain into parts; seeking an approximation to the solution as a linear combination of nodal 

values and approximation functions, and deriving the algebraic relations among the nodal values of the 

solution over each part and, finally, assembling the parts and obtain the solution to the whole [29]. 

Figure 3 - LS spherical powder formation by making use of a graphite powder bed to promote non-wettability regions 

around each particle [20]. 
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The domain’s discretization rests on the premise of dividing the domain into a collection of geometrical 

subdomains known as finite elements. This is called a mesh and must represent the problem’s 

geometry. For each element in this mesh, several points called nodes are defined, usually at the 

vertices, as it is seen in Figure 4.  

 

Figure 4 - Discretization of a two-dimensional domain into finite elements. The elements are represented by the numbers 

between brackets. At the intersection of multiple elements lie the nodes [30].  

The functions under consideration over the whole domain are calculated at the nodes, using the 

problem’s governing equations, by a process called interpolation. Lastly, the local solutions of the 

equations are assembled together within their original positions in the mesh. This section of the 

problem’s resolution has its ground on the continuity between elements and is also subjected to initial 

conditions as well as boundary conditions [29][30]. 

 

2.4.2.  Hardness Test Modelling 

 

Indentation hardness tests, such as the Brinell hardness test, are used extensively in industry. Usually 

carried out on metallic materials, hardness tests can provide information such as tensile strength, wear 

resistance, ductility and other material’s properties [31].  

The Brinell hardness test consists on lowering a tungsten carbide ball indenter into the surface of the 

material under study, in two steps. During the first step, the load is applied and kept for a designated 

time, after which it is removed. The second step comprises the measurement of two diameters, 

orthogonal to each other. The hardness number, BHN, is obtained from the mean of the measured 

diameters, d,  through equation (4), where F is the applied load in kgf and D is the spherical indenter 

diameter in mm [31][32]. The equation relates the applied load (𝐹) with the surface area of indentation 

(
𝜋

2
𝐷(𝐷 − √𝐷2 − 𝑑2). 

 𝐻𝐵𝑊 =  
2𝐹

𝜋𝐷(𝐷 − √𝐷2 − 𝑑2)
 (4) 
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Hardness test modelling, in general, enables the verification and validation of constitutive models and 

the prediction of material properties without the need to fully test them. 

During the initial increments of applied load of the test the deformed region where the material is 

indented is within the elastic regime. With the load increase of the load, the material will enter the plastic 

deformation stage. 

The propagation of the plastic region is influenced by material’s work hardening, as more and more 

dislocations intersect at the indentation region [33]. If subjected to uniaxial loading, the deformation 

behaviour, observed by the stress-strain curve, can be assumed to follow a power law like the one in 

equation (5), with k and n being material’s properties [34]. 

 𝜎 = 𝑘𝜀𝑛 (5) 

 

Therefore, it is to be expected that the mean contact pressure increases due to work hardening. At the 

end of the test, the region that was under the indenter is now fully plastic [34]. 

The relationship between indentation load and diameter presented in equation (6), was empirically 

developed by Meyer and later referred to by Grau et al [35]. 

 𝐹 =  𝐾 (
𝑑

𝐷
)

𝑛

  (6) 

 

The same work provided the mean pressure relationship presented in equation (7), which relates the 

applied load with the indented diameter’s projected area, also known as Meyer’s hardness for ball 

indentation [35], which actually is a projected area hardness [36]. 

 𝑃 =
𝐹

𝜋𝑑2/4
 (7) 

 

Detailed studies on contact mechanics involves mathematical complexities which can be solved with 

the FEM. Bhattacharya and Nix have successfully predicted the response of a material with respect to 

relationship between hardness, yield stress and the material’s Young modulus [37], with simple 

constitutive equations. 

FEM simulations in materials under conditions of compressive load, namely spherical hardness 

indentation, have been carried out by some researchers.  Chen et. al. applied the Gurson model to 

describe the porosity densification under the indenter, acknowledging the use of this model when 

assessing contact damage [38]. The Gurson model suggests a damage mechanics material model 

based on the observation that available plasticity models such as the Von Mises’ were predicting 

incompressibility, even though ductile fracture may involve significant porosity [39]. 
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The same model was used with porous ceramic films, revealing good agreement between the 

experimental and numerical data regarding the estimation of the uniaxial yield stress of the porous 

material [40]. 

Through analysis of FEM on porous copper-matrix composites, Sabzevari et. al. showed that simulation 

can be successfully utilized to predict and describe the material’s behaviour under compressive loads 

[41], as discussed before, with the possibility to employ different levels of porosity, between 20% and 

60%. 

 

2.4.3.  Constitutive equations for hardness testing in porous 

materials 

 

The hardness test can be defined as a static or quasi-static process. Since this work’s motivation is to 

address hardness in porous metallic bodies, it is necessary to create a model that takes it into 

consideration. The process requires the definition of constitutive equations for both the elastic and 

plastic regime. 

For isotropic materials, the elastic regime requires properties to create the material model, such as 

density, Young’s modulus and Poisson’s ratio. 

The plastic regime is created with common plastic deformation models from uniaxial testing. However, 

since the model must account for porosity within the metallic body, the latter model for plastic 

deformation is incomplete. One appropriate model that successfully completes the latter is the Gurson-

Tvergaard-Needleman (GTN) experimental model. It was proposed by Gurson and was later modified 

by Tvergaard and Needleman to the present form [39][42]. 

 Ф =  (
𝜎𝑒𝑞

𝜎𝑦
)

2

+ 2𝑞1𝑓 cosh (−𝑞2

3𝑝

2𝜎𝑦
) − (1 − 𝑞3𝑓2) (8) 

 

Equation (8) represents the yield surface and plastic potential (Ф) as a function of the void volume 

fraction (𝑓), where 𝜎𝑒𝑞 is the effective Von Mises stress, p the hydrostatic pressure, 𝜎𝑦 the yield stress 

of the fully dense material and 𝑞1, 𝑞2 and 𝑞3 the Tvergaard empirical material parameters.  When f = 0, 

the model is reduced to the Von Mises yield condition. 
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3. Experimental methods and techniques 
 

In this section, the techniques used to produce and characterize the samples are presented, along with 

the specimen’s identification nomenclature. 

 

3.1. Powder spheroidization 
 

As described in section 2.3, the spheroidization process requires the use of a powder bed (medium). 

The powder bed and the mould parts are made of graphite, therefore creating a copper-graphite system. 

Different copper-graphite mass ratios (CGR) were tested: 1:4; 1:2; 1:1 and 2:1. Capillarity effects were 

compensated with the use of weight on top of the moulds, thus avoiding particle coalescence. The mould 

and weight design are described in section 3.1.2. 

 

Figure 5 - Experimental procedure flowchart 
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The experimental procedure flowchart is shown in Figure 5. This procedure is composed of two main 

processes: Spheroidization and separation, represented by the flowchart sections A and B, respectively.  

The copper and graphite powders were weighted and placed inside a Turbula vial and mixed for 1 hour. 

A quantity of approximately 0.26 g of powder mix was weighted and placed inside the mould. This 

process was repeated for the two types of graphite, and, each time, more copper powder was added to 

the mix to increase the CGR to the desired values stated before. The starting mass ratio was 1:4. 

 

 

Figure 6 - Spheroidization process thermal cycles applied for all the carried-out tests. 

Under primary vacuum, the copper-graphite system was first heated to 980ºC, at a rate of 40ºC per 

minute and then subjected to two different temperatures independently: 1100ºC and 1200ºC; and two 

different time periods: 10 and 30 minutes. Figure 6 shows the holding time and temperatures for the 

different cycles. 

After the high temperature stage, the moulds cooled down to 50ºC inside the furnace and were then 

removed to cool to room temperature. 

After removing the samples, all the mould’s components and the employed weights were cleaned with 

ethanol and allowed to dry before repeating the procedure. 

The copper-graphite powder blend was mixed using a Turbula T2C from Willy A. Bachofen, with a 

maximum capacity of two litres. 

The spheroidization process was carried out in a Thermal Technology’s Model 1000, with a high-density 

graphite resistance element. All the runs were carried out under primary vacuum of the order of 1 Pa. 
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3.1.1.  Materials 

 

The spheroidization process involves both copper and graphite powders. The starting metallic powder 

was electrolytic copper powder from Pometon. Figure 7 shows the dendritic morphology of the starting 

copper powders. According to the manufacturer’s information, more than 98wt% of the particles have 

dimensions up to 63μm and in terms of chemical properties, the supplier ensures a copper weight 

percentage over 99.7%, with oxygen impurities around 0.08wt%. 

 

 

Figure 7 - SEM micrographs of the initial dendritic copper powder used in the spheroidization process. 

 

Figure 8 - SEM micrographs of the initial graphite particles. a) - Graphite KS4; b) -  Graphite PG10. 

The two different types of graphite used are shown on Figure 8, one natural and one synthetic, both 

supplied by IMERYS. The synthetic graphite (KS4), hereon denominated KS, has a particle size ranging 

from 2.4 to 4.7 μm, whereas the natural graphite (PM10), hereon denominated PM, has a particle size 

ranging from 6.4 to 12.5 μm, all guaranteed by the manufacturer. 
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3.1.2.  Weights and Moulds 

 

To compensate capillarity effects during the spheroidization process, thus avoiding particle 

coalescence, two weights were designed, so that the applied stress on the powder bed would be equal 

or higher than pressure difference for capillarity effects (∆𝑃). 

The ∆𝑃  value for capillarity was calculated by taking the mean particle radius provided by the supplier 

through equation (9), where 𝛾 is the material’s surface tension and 𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 the particle radius. 

Three ∆𝑃  values were selected: below, equal and above the value calculated for the mean particle 

radius. Below the value of ∆𝑃 no weight is necessary. 

Equation (10), with ∆𝑃 input from equation (9), was used to obtain the weights’ mass. The material 

chosen for the weights was stainless steel. With its density, the volume was adapted to both the mould 

and the required mass. This resulted in two cylindrical stainless-steel weights with 60mm and 30mm in 

diameter, weighting 1058g and 352g respectively (Figure 9). 

 ∆𝑃 =
2𝛾

𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 (9) 

 ∆𝑃 = 𝜎 =
𝑚𝑔

𝜋𝑟2
 (10) 

 

 

 

Figure 9 - Technical drawing of the stainless-steel weights and rods used in the spheroidization process. 

Table 4 shows the weights dimensions, mass and stress that each one applies on the powder bed. 
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Table 4 – Dimensions, mass and applied stress for the two designed weights. 

Weight D (mm) h (mm) m (g) ΔP (kPa) 

S 30 64 352 44 

B 60 48 1058 132 

 

The weights were supported by a stainless steel cylindrical rod of 10mm in diameter and 45mm in length. 

These components are represented in Figure 9. Both the rod and the weight were machined with 

tolerances of the order of tens of microns. To prevent contact between the rod and the samples, a 

graphite rod of 10mm in diameter and 10mm in length was added in between at each end of the cavity, 

as represented by the technical drawing in Figure 10 of section. 

The mould was designed taking into consideration the small amounts of powders under study, as well 

as the positioning of a weight on top of it. Each mould cavity has variable volume, up to a maximum of 

approximately 3.5ml. 

The mould must remain inert and endure the spheroidization temperature, between 1100 and 1200ºC, 

without compromising the samples. These conditions, narrowed down the list of possible mould 

materials to graphite. 

 

Figure 10 - Technical drawing of the graphite mould, assembled together with the graphite separating rods. 

 

3.1.3.  Sample Identification 

 

Copper particles spheroidization was carried out, for both copper-graphite mixes, at 1100ºC and 

1200ºC, for 10 and 30 minutes. The applied stress was also a variable under study: S (44 kPa), B (132 

kPa) and 0 (for when there was no applied stress). 
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Samples were identified according to the type of graphite (KS or PG), applied weight (S for small, B for 

big and 0 for no weight applied), test temperature (1100ºC or 1200ºC), holding time (10 or 30 minutes) 

and CGR (1:4; 1:2; 1:1; 2:1), in this order. 

The combination of all the variables resulted in a total of 32 samples produced. The identification for 

each sample, within the PG mixture, is explained in Table 5, while that of the KS mixture is done in Table 

6. 

Table 5 – Copper-Graphite PG10 powder mixture sample identification nomenclature. 

   Copper-Graphite Ratio 

T [°C] t [min] Weight 1:4 1:2 

1100 
30 

0 PG 0:1100:30:1_4 PG 0:1100:30:1_2 

S PG S:1100:30:1_4 PG S:1100:30:1_2 

B PG B:1100:30:1_4 PG B:1100:30:1_2 

10 S PG S:1100:10:1_4  - 

1200 
30 

0 PG 0:1200:30:1_4  - 

S PG S:1200:30:1_4  - 

10 0 PG 0:1200:10:1_4  - 

 

 

Table 6 – Copper-Graphite KS4 powder mixture sample identification nomenclature. 

   Copper-Graphite Ratio 

T 
[°C] 

t 
[min] 

Weight 1:4 1:2 1:1 2:1 

1
1

0
0
 

30 

0 KS 0:1100:30:1_4 KS 0:1100:30:1_2 KS S:1100:30:1_1 - 

S KS S:1100:30:1_4 KS S:1100:30:1_2 KS 0:1100:30:1_1 - 

B KS B:1100:30:1_4 KS B:1100:30:1_2 KS B:1100:30:1_1 - 

10 S KS S:1100:10:1_4 - - - 

1
2

0
0
 30 

0 KS 0:1200:30:1_4 KS 0:1200:30:1_2 KS 0:1200:30:1_1 KS 0:1200:30:2_1 

S KS S:1200:30:1_4 - - - 

10 
0 KS 0:1200:10:1_4 KS 0:1200:10:1_2 KS 0:1200:10:1_1 KS 0:1200:10:2_1 

S - KS S:1200:10:1_2 KS S:1200:10:1_1 KS S:1200:10:2_1 

 

 

 

3.2. Particle size distribution 
 

3.2.1.  Initial Powders 
 

Analysis of particle size distribution of the original powders, both copper and graphite, was carried out 

on a Coulter LS230 Particle Size Analyzer, capable of measuring particles with diameters ranging from 
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0.04 to 2000 μm [43]. This equipment also provides the values of d10, d50 and d90, which correspond to 

the upper limit length for a volume fraction of 10, 50 and 90%, respectively, of the particles. 

To compensate for agglomerations occurring on both graphite and copper during the measurements, 

3g of a dispersing agent were added to the suspension. The used dispersant was Dolapix. 

 

 

Figure 11 - Differential volume percentage regarding the particle size from the Coulter analysis carried out with the 

powders: copper, graphite PG10 and graphite KS4, with average diameter values of 31μm, 7μm and 3 μm, respectively. 

 

The results from the size distribution measurement of copper, graphite KS and graphite PM, that are 

illustrated in Figure 11, show that the particles size reported by the manufacturer is accurate.  

 

3.2.2.  Spheroidized powders 
 

To obtain the size distribution of the spheroidized powders diameters, 100 particles were selected 

among the SEM micrographs taken from each sample that underwent the separation process described 

later in section 3.3. 

The particle size measurement was carried out with the help of an image processing software, ImageJ. 

All the micrographs were taken with a magnification of 200x in the conditions described in section 3.4. 

Particle size was measured by averaging two perpendicular diameters from each particle. To assess 

the roundness degree of the particles in each sample, a shape factor Ef was applied to all the measured 

particles, using equation (11). 

 𝐸𝑓 =
𝑑1

𝑑2
 (11) 
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3.3. Powder separation 
 

The powder mix was first poured into a vial containing a solution of water-acetone with a proportion of 

1:1 in volume. The vial was then sonicated to separate the copper from graphite. 

The pre-separated powder mixture was added to the separation media where it stayed for one hour.  

The separation media was produced by adding 0,1 ml of hydrochloric acid to 200 ml of distilled water, 

previously heated to approximately 90ºC. The resulting solution has an acid concentration of 0.006M, 

which corresponds to a pH of approximately 2.22. The solution was kept at a constant temperature. 

After one hour, the graphite was concentrated at the top of the container and the copper powders at the 

bottom. 

Due to the small amount of powder obtained from each of the spheroidization tests, this process was 

only employed for the mixtures with CGR’s of 1:1 and 2:1. In samples with lower fractions, attempts on 

separating the powders would have resulted in the copper powder being removed along with the 

graphite. 

 

3.4. SEM and EDS 
 

Scanning electron microscopy (SEM) was used to verify and characterize the powders morphology and 

to assess their size. 

The microscope used, HITACHI S2400, was operated with a voltage of 25 kV and a working distance, 

WD, of 15 mm. The samples were all loose powders. 

The secondary electron, SE, detector was used to acquire topographical images of the samples. 

Energy dispersive X-ray spectroscopy analysis (EDS) was carried out to evaluate the specimens’ 

composition, using a Bruker Nano XFlash detector. 
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4.  Experimental results and discussion 

 

In this section, the experimental data from the spheroidization process is presented and analysed, as 

well as the influence that the separation medium had on particle’s morphology. 

 

4.1. Spheroidization process 

 

The starting copper powders’ morphology is dendritic, as described in section 3.1.1. The particles mean 

diameter, measured by the Coulter particle size analyser, was 30.90 ± 20.62 μm, and the values for d10, 

d50 and d90 were of 9.59 μm; 26.96 μm and 55.91 μm respectively. 

 

Figure 12 – SEM micrograph of copper particles before the separation process, surrounded by graphite platelets. 

The samples underwent a separation procedure, described in section 3.3, to allow for the visualization 

of the copper particles without the surrounding graphite flakes observed in Figure 12. This separation 

of copper and graphite powders was only carried out for the batches that with a mass copper-graphite 

ratio, CGR, of 1:1 and 2:1. In lower proportions, the copper is in such a minute quantity that is washed 

away in the separation process, therefore, it is not possible to obtain an amount that is representative 

of the entire sample, which in this work was defined as 100 particles. 

The influence of temperature, time, CGR and applied compressive stress on the size and particle’s 

spheroidicity was studied, being represented in terms of diameter and shape factor (equation (11)). 
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The shape factor provides information on the roundness degree of a set of particles. Since the diameters 

D1 and D2 are measured perpendicularly, when the shape factor equals one, the particle is considered 

fully spherical. 

 

 

Figure 13 – Samples of individualized particles, with their respective mean diameter (in blue) and their shape factor ratio 

(in green). The red line represents the mean starting diameter, before the spheroidization process. 

 

In Figure 13 particle’s measured diameter is represented in blue and the shape factor d1/d2 is 

represented in green, with their respective standard deviation. As observed, the standard deviation 

values are comparable to the average particle diameters. This occurs because the average diameter 

calculation takes a broad granulometric distribution into a single value. In fact, the initial copper particles 

diameter was 30.9 ± 19.8 μm. These large standard deviation values are consequently verified 

throughout all calculations. 

The shape factor of all the samples suggests that particles are elongated and not spherical. This is 

confirmed in Figure 14. Particles tend to be elongated, with one side being 1.5 times the other.  

 



23 

 

 

Figure 14 - SEM micrograph of sample KS B:1100:30:1_1 after powder separation. The bigger particles present an 

elongated shape whereas the smaller ones have more spherical morphologies. 

 

The effect of each of the studied parameters is analysed in detail on the following sections. 

 

4.1.1. Temperature 

 

For the samples treated at the same temperature (KS 0:1100:30:1_1; KS S:1100:30:1_1; KS 

0:1200:10:1_1; KS S:1200:10:1_1), it is observed (Figure 15 ) that a temperature increase of 100ºC led 

to an increase in particle diameter from 21.88 to 26.84 μm. The shape factor also increased, from 1.75 

to 1.87. 

 

 

Figure 15 - Temperature influence on the particle's size and shape factor, for a CGR of 1:1, with a 30-minute thermal cycle 

under no applied compressive stress. 
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As discussed in section 4.1, the standard deviation values are comparable to the measured particle 

diameters. Since all values are within error, the temperature influence on particle size and shape factor 

is not clear. 

 

4.1.2.  Copper-graphite ratio 

 

The effect of CGR was studied by comparing particles spheroidized in mixtures with CGR 1:1 and 2:1, 

at 1200ºC.  

For a thermal cycle of 30 minutes and under no applied stress (0), by doubling the copper mass, no 

alterations were observed (Figure 16).  

 

Figure 16 - Influence of the CGR on the spheroidization process of copper particles, regarding particle's size and shape 

factor. The measured particles were spheroidized at 1200ºC. 

By remaining in the furnace for 10 minutes, and for the same weight conditions, the powder diameter 

decreases from 27.64 to 21.99 μm, accompanied by a decrease in the shape factor, from 1.88 to 1.65.  

For the same time interval, but under low stress (S), the particle diameter decreases (from 30.05 to 

24.13 μm), when the CGR increases. Regarding the shape factor, no relevant difference was observed. 

The desirable result would be a decrease of the particle shape factor, since an elongated particle that 

is submitted to a temperature above its liquidus temperature, and surrounded by graphite flakes will 

tend to become spherical to reduce its surface energy, according to equation (3). 

 

4.1.3.  Time 

 

These results refer to samples spheroidized at 1200ºC under no applied stress. 

For powder mixtures with a 1:1 CGR, the difference between 10 and 30-minute holding time interval is 

well within the measurement error, for both particle diameter and shape factor (Figure 17). 

CGR 
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Figure 17 - Time variation from 10 to 30 minutes and its influence on the particle's size and shape factor. 

 

For a 2:1 CGR, the holding time increase resulted in a particle size growth from 21.98 to 26.60 μm, 

accompanied by an increase of shape factor from 1.65 to 2.13. 

Since there is more copper in the mixture, and consequently less graphite, by enduring a longer holding 

time, copper particles can coalesce due to the proximity between particles. This effect could explain the 

21.6% increase in copper particle’s size. 

 

4.1.4.  Applied Stress 

 

 

Figure 18 – Applied stress influence on the particle's size and shape factor. 

 

For the 1100ºC, 30-minute sample, as indicated in Figure 18, it is observed that a gradual particle size 

increase from 21.88 to 23.71 μm. Regarding the shape factor, it was lower for the smaller weight (S), 

with 1.54, and higher when no weight was applied, 1.75. 

For the 1200ºC, 10 minute samples, an increase on the applied weight also translated into an increase 

on the particle’s size, from 27.64 μm to 30.05 μm and from 21.96 μm to 24.13 μm, for both CGR 1:1 and 

2:2, respectively. However, when considering the shape factor, a slight decrease is observed on the 

samples with a 1:1 ratio (1.88 to 1.86), and an increase on the 2:1 ratio samples (1.76 to 1.84). 

Once again, the standard deviation values do not allow a correct evaluation of the influence of applied 

stress on powder spheroidization. 
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4.1.5.  Powder contamination 

 

Copper powders are submitted to multiple processing steps, therefore, it is important to assess their 

surface contamination, with special attention to oxygen, since these were initially low-oxygen copper 

powders. 

Figure 19 shows the EDS spectrum of copper powder’s surface before any procedure, after the 

spheroidization process and after the separation process. One EDS spectra of each is represented in 

Figure 19-d). 

 

Figure 19 – Micrographs of the particles used for the EDS analysis: a) Original copper powders; b) Copper powder after 

spheroidization process; c) Powders after separation process. d) Normalized EDS spectrum of the different step 

samples: original powders (black line), powders after spheroidization (red line) and powders after the separation process 

(blue line). 

The characteristic X-ray values of copper (Kα – 8.046 keV, Kβ – 8.904 keV, Lα – 0.928 keV, Lβ – 0.947 

keV) are present on all spectra. Few to no oxygen is observed at the surface on the original and 

spheroidized samples, appearing only in the sample that underwent the copper-graphite separation 

process. This suggests copper powder surface oxidation. 
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Figure 20 – The Ellingham diagram [44]. 

The Gibbs free energy (∆𝐺) of a reaction is a measure of the thermodynamic driving force that makes a 

reaction occur. A negative value for ∆G indicates that a reaction can proceed spontaneously without 

external inputs [44]. The Ellingham diagram (Figure 20) shows a plot of ∆𝐺𝑜 with temperature, for metals 

reacting with oxides. 

Spheroidized particles maintain an oxygen content similar to the original copper powders. This was 

expected for two reasons: the process was carried out under vacuum and the oxygen reduction reaction 

to carbon monoxide has a lower ∆𝐺𝑜 than the formation of any copper oxide, as observed in Figure 20, 

hence removing any oxygen amount that the vacuum system could not remove. 
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4.2. Influence of the separation medium on the particle’s 

morphology 

 

As described in section 3.3, the separation between copper and graphite particles was carried out in an 

aqueous solution of hydrochloric acid with a concentration of 0.006 M. This proved to be an effective 

copper extractor as referenced in the literature [45]. 

For a low concentration of hydrochloric acid such as 0.006 M, the pH is approximately 2.22. As expected, 

such a low pH has a considerable influence on the particle’s final morphology, as observed in Figure 

21. This occurrence was verified on all the samples that underwent the separation procedure. 

 

 

Figure 21 - SEM micrograph of sample KS 0:1200:10:2_1 after the separation process with some severely corroded 

particles identified with arrows. 

Some of the particles presented in Figure 21 appear to be corroded on the surface. This could be 

explained by the corrosion behaviour of copper in oxygenated hydrochloric acid solutions. This effect 

seems more preponderant in smaller particles than in bigger ones. 
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Figure 22 - Pourbaix diagram for copper in the copper-chlorine-water system at 80ºC [46]. 

Copper anodic dissolution is influenced by the chloride concentration. In fact, copper dissolution, which 

at low chloride concentrations occurs through the formation of CuCl, increases linearly with time [47]. 

Copper cations go to the solution and when these react with chloride ions, cuprous chloride (CuCl) is 

formed on the powder’s surface. The latter does not provide enough protection because since it 

transforms into the soluble copper chloride complex, CuCl2- [46][47]. This complex will decrease the 

immunity of the passivated areas on the copper powder’s surface thus increasing the weight loss effect 

of the particle by copper corrosion. This is illustrated in the Pourbaix diagram of copper (Figure 22) in a 

copper-chlorine-water system at 80ºC [46], 10ºC below the used separation temperature. 

 

Figure 23 - Copper particle's morphology comparison after the separation process in an 0.006M hydrochloric acid 

aqueous solution. a) particle before separation procedure; b) particles after separation, where corrosion effects are 

visible (identified with arrows). 
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Figure 23 shows a comparison between particles before and after being submitted to the separation 

process. On Figure 23 it is possible to observe copper cubes on the surface of small size particles. This 

effect is not present on all samples. Further work on this topic could unveil the cause of this occurrence. 

 

4.3. Summary 
 

Copper particles were submitted to a spheroidization process on a graphite powder bed, under different 

processing parameters. Alterations on the previously dendritic particles were observed. Since graphite 

platelets remained on the copper particle surface, it was necessary to separate copper from graphite. A 

hydrochloric acid solution was used as separation medium, under 90ºC for 1h. After the separation 

process, all the samples were observed on the SEM, and 100 particles per sample were measured. 

The particle shape of all the observed samples (CGR of 1:1 and 2:1) changed after the spheroidization 

process. Table 7 presents a summary of the particle’s measured diameter and shape factor. Due to a 

high standard deviation, it is not possible to conclude the influence of each parameter on the 

spheroidization process. 

Table 7 - Particle size diameter and spheroidicity ratio for the cleansed particles, and their respective processing 

parameters. 

Sample Temperature Time CGR Applied Stress D1 / D2 D 

KS B:1100:30:1_1 1100 30 1:1 B 1.60 ± 0.53 23.71 ± 8.78 

KS 0:1100:30:1_1 1100 30 1:1 0 1.76 ± 0.89 21.88 ± 10.69 

KS S:1100:30:1_1 1100 30 1:1 S 1.55 ± 0.46 22.86 ± 7.85 

KS 0:1200:10:1_1 1200 10 1:1 S 1.88 ± 1.14 27.64 ± 8.93 

KS S:1200:10:1_1 1200 10 1:1 S 1.86 ± 0.73 30.05 ± 11.98 

KS S:1200:10:2_1 1200 10 2:1 S 1.83 ± 0.71 24.13 ± 9.02 

KS 0:1200:30:1_1 1200 30 1:1 0 1.87 ± 0.78 26.84 ± 9.30 

KS 0:1200:30:2_1 1200 30 2:1 0 2.13 ± 1.18 26.60 ± 10.83 

KS 0:1200:10:2_1 1200 10 2:1 0 1.65 ± 0.62 21.99 ± 9.65 

 

The graphite-copper separation process is effective but induces changes in the previously spheroidized 

particles. After the separation procedure, some samples exhibited particles with cubes on their surfaces. 

No similar results were found in literature, thus further word on this topic is suggested to understand this 

occurrence. 

Since the primary purpose of this work’s section was to spheroidize the copper particles, any 

morphology modification after this process is not desirable, hence an alternative separation method 

should be studied. 

 

  



31 

 

5. Modelling 
 

FEM simulation of hardness tests on porous bodies could help validate constitutive equations for plastic 

deformation of porous solids.  

A material model that enables the manipulation of porosity percentage will be used to simulate porosity 

in copper bodies. This model will be matched against known material models, such as the Johnson-

Cook model of plasticity. Simulations will be carried out to test the influence of indenter size and porosity 

on the BHN. 

The Modelling section comprises the creation of the model under study, the identification of relevant 

variables, and the tests carried out along with results from the simulations. 

 

5.1. The Model 

 

FEM simulations could be used to assess a material’s porosity by conducting a hardness test without 

having to resort to complex tests. For now, this model aims to be the first development in this sort of 

studies. 

The Brinell hardness test was chosen due to the indenter geometrical shape. Sharp edges could be 

interpreted as singularities resulting in problems such as lack of convergence. The use of a round 

indenter allows to avoid such problems. 

The model itself must be a very close replication of the hardness test i.e., indentation of the sample 

surface along the vertical axis; hold the indenter in place for the standard period, indenter removal and 

hardness measurement. 

In the following subsection, the steps taken for the model creation as implemention in Abaqus are 

described. 

 

5.1.1. Parts 

 

The ideal finite element model for the simulation of the hardness test on sample with controlled porosity 

would be a three-dimensional representation of the problem. This would better represent the random 

distribution of voids inside the material under study as well as the stress flow throughout the test piece. 

However, to reduce computation time, hence allowing for more simulations and more variability 

conditions within the model under study, some simplifications are proposed. 
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The first simplification was to reduce the 3D model to a 2D axisymmetric one, allowing for a sharp 

decrease in element number and computation time. If the voids were included as geometrical holes, it 

would not be possible to create an accurate 2D axisymmetric model, since the voids would become 

toroidal holes throughout the sample, after the solid revolution, and not as discrete spherical ones. The 

voids were therefore included as corrections in the material properties and not as geometrical entities. 

The fact that the load is applied along the vertical axis with the stress flow being equally distributed in 

the perpendicular directions sustains the choice for an axisymmetric model. 

In the following subsections, the development of the different model components is explained in detail. 

 

• Ball indenter 

 

In Brinell hardness testing, the indenter is a tungsten carbide (WC) sphere [32]. 

The ball indenter can have three possible diameters: 2.5; 5 and 10 mm [31]. Because the model is 

created with a 2D axisymmetric configuration, the indenter is represented by a semi-circle (Figure 24 

a)). The indenter’s material has a Young modulus several times higher than that of copper. For this 

reason, the indenter will only experience elastic deformation, and even this value will be small enough 

to be neglected. Therefore, and since the purpose of this work is only the study of the behaviour of the 

copper body, the indenter was defined as a rigid solid.  

 

Figure 24 – Representation of the model’s parts: a) Indenter sphere defined as a rigid material; b) Copper body, defined 

as elasto-plastic material.  
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• Body 

 

The copper body (Figure 24-b)) on which the indentation will be carried out was created with 42 mm in 

height by 35 mm in width, with both values being more than five times the indenter radius. This was 

done to prevent any boundary effect propagation onto the indentation region. 

Unlike the indenter, the body will be subjected to both elastic and plastic deformations. 

 

5.1.2.  Materials 

 

For the computational model, and since any deformation on the indenter is neglected, it is not necessary 

to assign material properties to it, within the model. 

The material under study is electrolytic copper. Since the aim of this project is to study porous materials, 

it is necessary to cast aside the classical plasticity models. The chosen model is based on the Gurson-

Tvergaard-Needleman model. It allows to freely change the relative density of the material, between 1 

and 0.9, thus controlling the porosity content from 0% to 10%. When porosity is set to 0%, the model 

represents a fully dense body, allowing for comparison with other standard models for dense materials. 

For this purpose, two different models were created, one that represents the desired porosity (GTN) and 

another fully dense material (CPM). Their specifications are described in detail in the following two 

subsections. 

 

• Fully dense material 

 

There are several dense material models available in the literature. The one chosen for this comparison, 

the Johnson-Cook plasticity model [48] (equation (12)) takes as input the material parameters found in 

Table 8, with 𝜎 being the equivalent stress, 𝜀𝑝  the equivalent plastic strain, 𝜀̇ the strain rate, 𝜀0̇  the 

normalizing strain rate and A, B, C and n the empirical model parameters. 

  𝜎(𝜀𝑝, 𝜀̇) = (𝐴 + 𝐵𝜀𝑝
𝑛) (1 + 𝐶𝑙𝑛

𝜀̇

𝜀0̇
) (12) 

 

The material properties introduced in Abaqus are part of the Johnson-Cook model of plasticity, with no 

consideration for temperature influence. Table 8 summarizes the chosen parameters and the sources 

from which they were obtained. 
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Table 8 - Johnson Cook material's properties and parameters introduced for the tensile test simulation [49]. 

Material Properties Value Units Reference 

Density 8950 Kg/m³ 

[50] Young’s Modulus 125 GPa 

Poisson’s ratio 0.35 - 

A 90 MPa 

[51] 

B 292 MPa 

C 0.029 - 

n 0.31 - 

𝜀0̇ 1 - 

D1 0.54 - 

[48] 

D2 4.89 - 

D3 -3.03 - 

D4 0.014 - 

 

 

• Porous material 

 

The porous material was defined according to the GTN model described in section 2.4.3. 

The GTN model only presents reliable data for relative density higher than 0.9, which implies a maximum 

porosity of 10% [52], [53]. Compaction studies carried out on copper powders show that a pressure 

above 300 MPa produces relative densities well above 0.9 [54]. These powders would have to be 

compacted at an assumed pressure above 300 MPa and sintered to be usable. 

  

Table 9 - Materials parameters and properties for the GTN porosity model to be introduced in Abaqus. 

Material Properties Value Units Reference 

Density 8950 Kg/m³ [50] 
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Young’s Modulus 125 GPa 

Poisson’s ratio 0.35 - 

Yield stress - MPa - 

q1 1.5 - 

[42],[55] q2 1 - 

q3 2.25 - 

Friction coefficient 0.75 - [56] 

 

Both material models require data from stress-strain curves and therefore, in this modelling project, a 

tensile test was created to provide the necessary input to the material models. 

The specimen was created according to ASTM E8/E8M – 09 [57] and meshed with 15780 C3D8R 

elements, and 20016 nodes, as illustrated in Figure 25.  

 

Figure 25 - Meshed tensile test specimen, with 15780 C3D8R elements, 20016 nodes, and rectangular cross-section. 

One side of the specimen was encastred and the other end was subjected to the tensile movement.  

The same standard requirements were used for the tensile test procedures, namely the testing speed, 

which was set to 0.5 mm per minute. 

 

5.1.3.  Assembly 

 

The assembly of the indenter and sample parts is carried out according to the desired position for the 

start of the test. Figure 26 illustrates the relative positions of the indenter and the sample body. 

In hardness testing the indenter is not initially in contact with the sample. This only happens after the 

test is in motion. However, to save computational time, the indenter was set to start the simulation in 

contact with the body. This choice of assembly also facilitates the creation of contact properties. 
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Figure 26 - Assembly of all the components on their starting positions on the hardness test. 

 

5.1.4.  Step 

 

The mechanisms set to occur during the simulation are created in the step section based on the type of 

process under study. 

For this specific situation, given that the model is defined by a low deformation rate of the body and 

small displacements from the indenter, the step was defined as static general, with the specifications 

presented in Table 10. The same values were used in the final simulations. 

Table 10 - Step incrementation parameters introduced in the software. 

Time period 
Maximum number 

of increments 

Increment size 

Initial Minimum Maximum 

12 650 0.0001 0.000011 1 

 

 

Two steps were created in the model. The first step, Indentation, simulates the indentation process itself, 

accounting for the specimen penetration and holding time, defined by the standard applied throughout 

the whole model [31]. 

The second step, Removal, refers to the removal of the indenter from the sample. This step was defined 

with a normalized time interval of 1. Apart from this, all other parameters are as described in Table 10. 
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5.1.5.  Interaction Properties and Contact 

 

As stated before, contact is made between a rigid and a deformable material, the indenter and the 

copper body respectively. For this purpose, surface-to-surface contact interaction was chosen as the 

type of contact to be applied to the model from the initial step stage to the end. The selected surfaces 

are illustrated in Figure 27. The rigid surface was chosen as the first or master surface (in red) and the 

deformable surface was chosen as the second or slave surface (in purple). In terms of sliding 

formulation, Finite sliding was chosen due to its broader formulation. It allows any arbitrary motion of 

the surfaces [53]. This eases the convergence during the simulation. 

 

Figure 27 - Selected surfaces on which the contact properties are applied. In red in the master surface (indenter's surface) 

and in purple is the slave surface (sample partition's surface). 

 

The contact conditions dictate how the surfaces will act based on the properties selected for the 

interaction itself. Regarding this matter, two different behaviours were selected: normal behaviour and 

tangential behaviour. The friction coefficient is introduced in the model as part of tangential motion. 

These parameters were the same for all simulations. 

 

5.1.6.  Boundary Conditions and Load 

 

Boundary Conditions (BC) were defined for both the indenter and the body.  

For the body, BC’s were set on two different edges. On the lateral vertical left edge, the BC was created 

to ensure symmetry along the r-axis, so that no deformed material flows to the symmetry axis of the 
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model. On the bottom edge, the BC was set as encastre to prevent any movement once the indentation 

process begins. 

For the indenter, it was necessary to create a movement restriction, allowing only for displacement along 

the vertical y-axis. 

Figure 28 shows the boundary conditions applied to the computational model. 

 

Figure 28 - Schematics of the boundary conditions applied to the hardness model. 

 

A compressive load was created on the reference point of the indenter. Table 11 presents the possible 

load intensities allowed by the standard [31] for each ball diameter used during the mesh study and final 

simulations. 

Table 11 - Ball diameter, test load and force-diameter ratio used in the simulations [31]. 

Ball Diameter 

[mm] 

Test load F/D² ratio 

[kgf/mm²] N kgf 

10 14710 1500 15 

10 9807 1000 10 

10 4903 500 5 

5 2452 250 10 

5 1226 125 5 

2.5 612.9 62.5 10 

2.5 306.5 31.25 5 
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5.1.7.  Mesh 

 

To calculate the material functions addressed in the previous sections, the software needs the location 

of nodes and elements provided by the mesh, so it is mandatory to mesh each of the model’s parts. 

Choosing the correct mesh requires balance and sensitivity to the condition under study. Too coarse 

and the model will be faster when simulating but will stray from the reality; too fine of a mesh could 

provide results very close to reality, at the expense of simulating time, since the software must solve a 

very high number of equations. By running several trial-runs, it is possible to choose the conditions that 

best simulate reality without taking too long to obtain them. 

The trial simulation methodologies were applied in this process to access the ideal parameters for the 

hardness test, in terms of partition’s shape, mesh size and type of elements. 

• Indenter 
 

The indenter was defined as a rigid part, but still requires a mesh. Since there is no deformation 

occurring on the indenter, the mesh considerations are not as important as in the body. Therefore, only 

one parameter was taken into consideration: the section of the indenter that was close to the contact 

region between the parts had to be more finely meshed than the section that was not involved in any 

contact mechanism, so that more indenter’s nodes are in contact with the body. The indenter was 

meshed with 41 nodes and 40 elements. 

• Body 
 

Unlike the indenter, the Body will undergo plastic deformation during the hardness test. During a finite 

element method simulation, plastic yield and strain propagation are influenced by the mesh, geometry 

and size.  

On Brinell hardness test, the hardness number is calculated with equation (4), by providing the radius 

of the indent left by the probe. From the simulation results, the radius is taken as the distance from the 

symmetry axis to the node that remains in the original position (Figure 29), and so it is highly influenced 

by the meshing of the part.  

 

Figure 29 – Identification of the node that is used to assess the indentation radius. 
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Consequently, it becomes relevant and necessary to perform a thorough study on this parameter to 

assess the mesh that better correlates to experimental hardness. 

 

 

Figure 30 - Mesh study baseline results, displaying the Von Mises stress for the indentation a) and removal b) steps, as 

well as the equivalent plastic strain, c) and d), for the same simulation steps. 

 

An advantage of only having one deformable body is that the mesh study can be carried out as a trial 

and error approach without having major implications on the remaining parts of the model.  

An automatic mesh was automatically generated by the software on the part’s domain with quadrangular 

elements. Even though it created a very coarse mesh, it serves as an example to observe the stress 

and plastic deformation across the body (Figure 30), as well as the indentation and removal mechanism. 

The model debugging also occurred during this stage. 

It was possible to observe that stress propagated only to the region below the indenter. This justifies the 

reduction of the number of elements spread throughout the sample concentrating them in the indentation 

region. For this purpose, a partition with a length of 10mm was created. This size was chosen to ensure 

that all the plastic deformation remains inside the partition. 

As described earlier in this section, any modifications to the elements, or mesh, may have a big impact 

on the final hardness results. Therefore, the partition’s shape will also constrain the number of elements 
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and their respective distribution. To test the magnitude of this effect, two partition configurations were 

tested: a circular partition and a square partition. 

The body mesh can be composed of triangular or quadrangular elements, or a combination of both. 

Quadrangular elements can adapt more easily to deformation, since they have more faces and vertices 

to move and accommodate deformation, than triangles. On the other hand, triangular elements have a 

better fitting to the partition’s shape than quadrangular elements. It is therefore necessary to analyse 

the influence of each element on the overall simulation. 

 

 

Figure 31 - Elements size variation with the number of elements present in the partitioned region of the deformable body. 

 

When triangular elements were chosen, the software automatically generated a mesh, since these 

elements are more versatile than quadrangular elements. However, with the latter it was not possible to 

generate a mesh due to the high distortion of the elements. To correct this, the outer elements were 

defined as triangular elements. 

To identify the number of elements necessary to the model, the partition was seeded. Seeding is the 

operation of defining the number or size of divisions required per edge of the body to be meshed. An 

element size evaluation was made by ranging element’s dimensions from 20 to 200 μm. By decreasing 

the element’s size, one increases their number. This relationship is illustrated in Figure 31. 

Two partition configurations and two different elements result in 4 attempted test conditions for each of 

the element’s size, as represented in Figure 32, representing a total of 44 simulations carried out to 

study the mesh. 
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Figure 32 - Different configurations for the tested parameters of partition shape and element's geometry: a) square 

partition with quadrangular elements; b) square partition with triangular elements; c) circular partition with quadrangular 

elements; d) circular partition with triangular elements. 

 

Given that the purpose of this initial study is to evaluate the mesh according to the multiple parameters 

above mentioned, the load and the indenter’s diameter were kept constant at 1500 kgf (14710 N) and 

10 mm, respectively. Test results are shown in Figure 33 to Figure 37. 

The stress curves from Figure 33 represent the maximum value of Von Mises stress at the minimum 

vertical indenter position (at the end of the indentation step) (full line with dot markers) and at the end 

of the removal step (maximum residual stress) increment (dashed line with cross marker) as a function 

of the number of elements. For the four test conditions, it is possible to denote differences between 

quadrangular and triangular elements. Even with different partition shapes, all simulations using 

quadrangular elements show some consistency, while those using triangular elements present 

significant changes between the circular and the square partitions. 



43 

 

 

Figure 33 - Maximum values of Von Mises stress at the end of the indentation and removal steps plotted against the 

number of elements of the body. 

After undergoing plastic deformation, the material recovers its elastic deformation [58]. Therefore, the 

removal step plot is expected to be placed below the indentation step plot. This is verified for all tested 

conditions, except for the model with a square partition and triangular elements (Figure 33). For the 

others, quadrangular elements have a higher difference between the indentation and removal steps for 

maximum stress produced by the simulation. 

Figure 34 represents the stress curve variation and its derivative. The derivative provides information 

on the stability of the model with increasing number of elements: the derivative will tend to zero in models 

with higher stability. Triangular elements show an ever-changing plot of the stress curve. The circular 

partition with triangular elements (Figure 34 - d) eventually reaches a plateau, but for more than 40000 

elements. Steady stress values with increasing number of elements are only obtained for the 

quadrangular elements. These results suggest that, in this model, the element’s shape has a higher 

influence than the partition’s morphology in the final result.  

 

Figure 34 – Von Mises stress curves and their respective derivative plotted against the number of elements present in 

the Body's mesh: a) Square partition with quadrangular elements; b) Square partition with triangular elements; c) 

Circular partition with quadrangular elements; d) Circular partition with triangular elements. 
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The data on equivalent plastic strain (Figure 35) follows the same trend observed on stress plots 

analysed before. For the circular partition with triangular elements strain quickly increases with the 

number of elements. For the square partition and triangular elements, the stabilization of strain is only 

obtained after 40000 elements. For quadrangular elements, with both circular and square partition, strain 

values reach a plateau at 10000 elements. Results from equivalent plastic strain (EPS) suggest that 

quadrangular elements have higher stability and better agreeability than triangular elements. 

 

Figure 35 – Equivalent plastic strain (EPS) plotted against the number of elements present in the mesh. 

In Figure 36, the contact pressure (CP) is plotted against the number of elements in the mesh. This 

parameter remains approximately constant, at 766 MPa, for quadrangular elements, with either partition. 

The same does not hold for the triangular elements mesh with the circular partition showing local 

maxima values of pressure with great differences in magnitude, for a low number of elements. The 

square partition with triangular elements has a lower variation of contact pressure, but still significant 

when compared to the quadrangular elements experiments. 

The values of contact pressure in Figure 36 represent the maximum for this parameter at the end of the 

indentation step, since there is no contact afterwards. 

 

 

Figure 36 - Contact pressure (CP) plotted against the number of elements in the mesh. 
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Figure 37 - Brinell hardness number plotted against the number of elements in the mesh. 

 

The reported values of BHN for copper range from 70 to 100 [50]. The results obtained from the mesh 

study simulations (Figure 37) are within the expected values, confirming the validity of the simulation. 

For a square partition with a mesh of triangular elements the hardness number decays when the number 

of elements increases, converging to approximately 81. The remaining three curves plotted in Figure 37 

exhibit the same behaviour with very similar hardness values. 

Based on the results from the mesh study, it was decided that the model for the porous body would have 

a square partition with 42643 quadrangular elements (CAX4R). This configuration shows the highest 

stability in terms of stress and strain among those studied. 

 

• Pile-up and sink-in effects 
 

As previously described in section 2.4.2, Brinell hardness tests are carried out by indenting the sample 

with a tungsten carbide ball indenter. Depending on the properties of the tested materials, pile-up or 

sink-in effects might occur. This affects the measured indented area and consequently the hardness 

number. With pile-up effects the contact radius increases, thus decreasing the BHN. The opposite 

occurs for sink-in effects [59]. 

Brinell indenters, unlike like Vickers’ or Knoop’s, have no edges, and for this reason it is more difficult 

to measure the indentation size left on the sample, thus influencing the material’s hardness. Because 

the body will deform according to its nodes, the mesh can also be a source of error regarding the BHN. 
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5.1.8. Material Model Comparison 
 

 

In the previous simulations the Johnson-Cook model of plasticity (hereon referred to as classical 

plasticity model (CPM)) was used to study the mesh of the body. 

The purpose of this work is to study the Brinell hardness test simulation on porous bodies. To do so, the 

GTN model will be used. The GTN model allows the variation of the relative density of the material from 

1 (which represents a fully dense material) to 0.9 (that represents a material with 10% of porosity). Due 

to this, it is necessary to compare the GTN model at 0% porosity with the CPM model, to assess its 

validity. 

 

 

 

Figure 38 - Comparison between the two material models, GTN and CPM, regarding: a) the von Mises stress, b) contact 

pressure c) equivalent plastic strain, and d) Brinell harness number (BHN).  

The results of the validation study are depicted on Figure 38 with respect to stress, strain, contact 

pressure and hardness. Regardless of the number of elements, the comparison was carried out for all 

the parameters. 

The stress, from both steps (indentation and removal) was identical for the two models, regardless of 

the number of elements. For contact pressure, the two models start to converge for a higher number of 

elements, above 10 000. The equivalent plastic strain (EPS) values increase with the number of 

elements for both models with a local maximum for the GTN model, at approximately 27 000 elements, 

which is not present in the CPM model. Both models show approximately the same EPS and BHN for 

42643 elements. Table 12 displays the difference between the two models at the end of the removal 

step. 
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Table 12 – Difference between the CPM and the GTN model for the tested parameters (with 42643 CAX4R elements). The 

results are displayed in percentage. 

 Step 1 - Indentation Step 2 - Removal Hardness 

Number of Elements Max EPS Max S Max CP Max S BHN 

42643 -0.13153 0.02860 -0.06551 0.13038 -0.01067 

 

For the selected testing configuration, the results reveal that the two models are similar, since the 

maximum difference found is below 0.14%. 

These results validate the applicability of the GTN model, making it possible to test and assess values 

of stress, strain, contact pressure and hardness for porosities up to 10%. 

 

5.1.9.  Simulation time 

 

For the simulation time, three stages were defined: indentation, holding and removal. A 1 second 

indentation stage was defined, during which the indenter penetrates the sample. This is followed by the 

holding stage, when the indenter is kept stationary at full indentation depth for a minimum of 10 seconds. 

The final stage, removal, which lasts for 1 second, comprises the indenter is removal from the body, 

thus ending the hardness test. 

The simulation time was set as described by the Brinell Hardness Test Standards [31]. 

 

5.2. Results 

 

The final simulation aims to study the influence that the applied load has on the material’s hardness, for 

different fixed values of porosity, establishing a correlation between the applied load and measured 

hardness. Three loads were applied: 1500, 1000 and 500 kgf; one diameter was used (10mm) and 

relative density (porosity) varied from 1 to 0.9 with 0.01 increments. 

The other goal of the simulation is to evaluate how the material behaves for a given F/D² ratio and 

relative density. Two F/D² ratios were selected: 10 and 5 kgf/mm²; three indenter diameters were used: 

2.5, 5 and 10 mm; with three relative densities: 1, 0.95 and 0.9, and the load resulted from the F/D² ratio. 

All the selected conditions resulted in a total of 57 different simulations. 

Five valuable output variables were identified: Von Mises stress (S), which assesses the stress applied 

on the body; equivalent plastic strain (EPS), that provides information on the body’s deformation; contact 
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pressure (CP), as endured by the body; void volume fraction (VVF) and void volume fraction growth 

(VVFG), which relate to the void amount and closure. 

The Brinell hardness number is calculated with equation (4). For the indenter’s diameter, the distance 

from the symmetry axis to the node that maintains its original relative position is measured, as described 

in section 5.1.7. 

 

5.2.1.  Porosity influence in the Hardness test 
 

 

To assess the influence of porosity and load on Brinell hardness value, loads of 1500, 1000 and 500 kgf 

were selected. Figure 39 plots Brinell hardness number (BHN) versus relative density (RD). 

For a RD of 1 (which corresponds to 0% of porosity), the material has a hardness of 77.18 BHN, 74.62 

BHN and 71.99 BHN for the respective loads 1500, 1000 and 500 kgf. For a RD of 0.9 (10% porosity), 

the Brinell hardness of the material is now 59.09 BHN, 55.50 BHN and 52.04 BHN for the same loads 

(in the same order). 

 

Figure 39 - Brinell hardness number plotted against the relative density for the three different load configurations tested 

(1500, 1000 and 500 kgf). 

A linear decrease in BHN with a decrease in RD is suggested by the fitting equations (13) to (15). 

 
𝐵𝐻𝑁500 =  199.16𝑥 − 127.56 

𝑅2 = 0.9798 
(13) 

 
𝐵𝐻𝑁1000 =  189.05𝑥 − 114.26 

𝑅2 = 0.9871 
(14) 

 
𝐵𝐻𝑁1500 =  180.16𝑥 − 103.22 

𝑅2 = 0.9995 
(15) 
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The difference in hardness, due to the increase of relative density, for 1500, 1000 and 500 kgf applied 

loads, corresponds to 18.09 BHN, 19.12 BHN and 19.95 BHN respectively. Also, lower applied loads 

produce lower BHN. This could be due to the lack of material (increasing porosity percentage) beneath 

the indenter. Therefore, for the same volume there is less copper mass on which stress can be 

dissipated, promoting higher deformation, hence lower hardness. 

A relationship between BHN and VVF, for any applied load, is proposed in equation (16). 

 
𝐵𝐻𝑁 = 74.9 ∙ (

𝐹

𝐷2
)

ℎ

−0.,065

− 187.7 ∙ 𝑉𝑉𝐹 ∙ (
𝐹

𝐷2
)

ℎ

−0.,215

 

𝑅2 = 0.9998 

(16) 

BHNs are corrected taking in account the F/D² ratio used. Considering that 10 represents a 

recommended F/D2 ratio for copper and copper alloys a dimensionless homologous ratio, (F/D²)
h
, is 

defined as (𝐹/𝐷2)ℎ = 𝐹/(10 ∙ 𝐷2).   Figure 40, represents 𝐵𝐻𝑁 ∙ (𝐹/𝐷2)ℎ
0.065

 as a function of a of the 

homologous volume void fraction 𝑉𝑉𝐹ℎ = 𝑉𝑉𝐹 ∙ (𝐹/𝐷²)ℎ
−0.15

. 

 

Figure 40 – Brinell Hardness simulation results for all load conditions. D=10mm. 

 

Figure 41 plots Von Mises stress for the indentation and removal steps, CP and EPS against the relative 

density of the material. 

For all applied loads, stress decreases when the relative density decreases (increase in porosity). The 

difference of stress (recorded at the end of the indentation step) between 0 and 10% porosity is 35.8, 
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56.9 and 68.5 MPa for the 1500, 1000 and 500 kgf applied loads, respectively. This difference increases 

when the load decreases from 1500 to 500 kgf. 

For the removal step, these differences are 3.2, 23.9 and 58.5 MPa, respectively. 

 

Figure 41 - Maximum values of Von Mises stress at a) indentation and b) removal, c) contact pressure and d) equivalent 

plastic strain. 

With increasing porosity, there is less material to support the applied load, and so, the stress required 

to induce plastic deformation is lower. It is predictable that for a same porosity percentage, lower loads 

induced lower stress values on the material. 

For the Von Mises stress at removal it is observed that some instabilities occur at values of RD between 

0.98 and 0.96. 

Equations (17) to (19), obtained by fitting trendlines to the data, are proposed for the variation of the 

Von Mises stress (in MPa) at full indentation depth with relative density (RD). The coefficient of 

determination (R²), used as an acceptance criterion, shows that the equations are a good fit for the data. 

 𝑆𝑖𝑛𝑑500 = 1961.5 ∙ (𝑅𝐷)2 − 3025 ∙ 𝑅𝐷 + 1371.2        𝑅2 = 0.9979 (17) 
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 𝑆𝑖𝑛𝑑1000 = −322.84 ∙ (𝑅𝐷)2 + 1196.9 ∙ 𝑅𝐷 − 538.08 𝑅2 = 0.9989 (18) 

 𝑆𝑖𝑛𝑑1500 = −2032.6 ∙ (𝑅𝐷)2 + 4229.6 ∙ 𝑅𝐷 − 1847.1 𝑅2 = 0.9990 (19) 

 

CP decreases with the increase in porosity, but with a higher difference between the minimum and 

maximum values of porosity than the one recorded for stress, which correspond to 149, 174 and 205 

MPa, for 1500, 1000 and 500 kgf loads respectively. The values of equivalent plastic strain (EPS) also 

decrease from 1 to 0.9 relative density with the magnitudes: 0.0544, 0.0342 and 0.0098 for the 1500, 

1000 and 500 kgf loads, respectively. Regarding their initial values (for a relative density of 1) the EPS 

shows lower but little deviation. 

Both contact pressure and VVFG present negative slopes in their respective figures. This indicates that 

the applied load is not only responsible for plastically deforming the material but also for compacting 

voids beneath the indenter. Since the applied load is closing the voids while deforming the material at 

the same time, it would be expected that both strain and stress would maintain a decreasing but steady 

value with increasing porosity as observed in Figure 41. 

 

Figure 42 – VVF and VVFG variables, a) and b) respectively, plotted against the relative density of the copper body for 

three applied loads: 1500, 1000 and 500 kgf. 

 

Figure 42 shows the variation of VVF and VVFG parameter with the relative density of a copper body 

for the applied loads. 

The increase of VVF with decreasing relative density (Figure 42-a) is mathematically expressed by the 

parabolic fitting equations (20) to (22).  

 𝑉𝑉𝐹500 = 2.0038 ∙ (𝑅𝐷)2 − 4.0978 ∙ 𝑅𝐷 + 2.0937 𝑅2 = 0.9995 (20) 
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 𝑉𝑉𝐹1000 = 1.6921 ∙ (𝑅𝐷)2 − 3.351 ∙ 𝑅𝐷 + 1.6592 𝑅2 = 0.9990 (21) 

 𝑉𝑉𝐹1500 = 1.0596 ∙ (𝑅𝐷)2 − 2.0738 ∙ 𝑅𝐷 + 1.0146 𝑅2 = 0.9892 (22) 

 

Void growth versus relative density graph (Figure 42-b) has a negative slope due to the compaction of 

the pre-existing voids in the region beneath the indenter where the indented region underwent plastic 

deformation. 

This compaction behaviour follows a polynomial trend. Equations (23) to (25) are proposed for the 

relationship between void growth and relative density, ensuring a perfect fit to the plots, since the 

coefficient of determination equals 1. 

 𝑉𝑉𝐹𝐺500 = 2.0035 ∙ (𝑅𝐷)2 − 3.0972 ∙ 𝑅𝐷 + 1.0935 𝑅2 = 0.9999 (23) 

 𝑉𝑉𝐹𝐺1000 = 1.6904 ∙ (𝑅𝐷)2 − 2.3479 ∙ 𝑅𝐷 + 0.6577 𝑅2 = 1 (24) 

 𝑉𝑉𝐹𝐺1500 = 1.0275 ∙ (𝑅𝐷)2 − 1.0122 ∙ 𝑅𝐷 − 0.0151 𝑅2 = 1 (25) 

 

 

• Summary 
 

Through this study it was verified that the BHN decreases linearly with relative density for all tested 

loads. Equations (13) to (15) are proposed to describe the BHN variation with relative density. All Brinell 

hardness simulation results can be expressed by equation (16), if F/D² ratio is considered, for copper, 

when VVF ranges from 0 to 0.1. 

The Von Mises stress decreases with decreasing relative density, since for the same volume there is 

less material to support the applied load. Equations (17) to (19) are proposed for the relationship 

between Von Mises stress and relative density. 

The EPS maintains the same trend with relative density for all the applied loads. Higher loads induce 

higher values of EPS. Lower applied loads exhibit higher differences between 0 and 10% porosity. 

For increasing porosity, with a higher applied load VVF and VVFG parameters present the lowest value, 

since there is more compaction due to higher plastic deformation. Equations (20) to (22) are proposed 

to describe the variation of VVF with relative density. The relationship between VVFG and the relative 

density is provided by the proposed equations (23) to (25). 
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5.2.2.  Indenter size and load influence on the hardness test 
 

To evaluate load/indenter size ratio influence on BHN, the F/D² that roughly represents the applied 

stress, must be kept the same when varying the indenter’s size. Two F/D² ratios were selected, 5 and 

10 kgf/mm², for three different indenter size diameters: 2.5, 5 and 10 mm. For each diameter three 

different porosity percentages (P) were used: 0%, 5% and 10%. For this study, the Von Mises maximum 

stress and the BHN were analysed. 

 

• Von Mises Stress 
 

The Von Mises stress variation with the diameter of the indenter is represented in Figure 43.  

For a F/D² ratio of 10 kgf/mm² (Figure 43 a) and c)) the stress at full indentation and removal decreases 

with increasing porosity, just as discussed in the previous section. This behaviour is attributed to the 

fact that there is less material to support the applied load, therefore, the stress required to deform the 

material decreases when porosity increases. 

When the indenter’s diameter varies from 2.5 to 10mm, the stress at full indentation increases, reaching 

eventually a threshold that depends on the porosity: 335, 308 and 279 MPa for 0, 5 and 10% porosity, 

respectively. This increase is maximum for a fully dense material (0% porosity).  

Under a lower F/D² ratio ( Figure 43 b) and d)) for 0 and 5% porosity the material’s behaviour follows 

the 10 kgf/mm² F/D² ratio trend. For 10% porosity, there is an irregular variation with respect to the 

indenter diameter, for a 5-mm diameter. This could suggest that the model is not reliable for higher 

porosities at lower applied loads.  

 

Figure 43 - Maximum values of Von Mises stress variation with the indenter’s diameter, at the end of the indentation and 

removal steps, for F/D² ratios of 10 and 5 kgf/mm², with three porosity levels (0, 5 and 10%). 
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As discussed in section 5.2.1, the stress at removal is lower for higher porosity percentages. It increases 

with increasing indenter’s diameter. 

Figure 44 compares the stress and relative density for different diameters, at the indentation and 

removal steps. For a 10 kgf/mm² F/D² ratio, the stress tends to decrease linearly with relative density. 

This is observed for all the indenter diameters for both the indentation and removal steps. 

 

 

Figure 44 – Correlation between maximum Von Mises stress and relative density, at the end of the indentation ( a) and 

b)) and removal ( c) and d)) steps. 

For the 5 kgf/mm² F/D² ratio no general trend could be observed. The biggest deviations are observed 

for a relative density value of 0.9. At such relative density, one is carrying test at the edge of the model’s 

applicability. This could be the cause of such deviations. 

The lack of consistency verified for a small F/D² ratio suggests that the model cannot be used under low 

values of applied load, as already suggested. 

 

• Brinell hardness 

 

The influence of the indenters’ size on BHN is represented in Figure 45 for the tested F/D² ratios (5 and 

10 kgf/mm²). 
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Figure 45 - Brinell hardness variation with indenter’s diameter for three porosity levels (0, 5 and 10%) and two F/D² ratios: 

a) 10 kgf/mm² ratio; b) 5 kgf/mm² ratio. 

The results show that for the highest porosity the results are not stable, particularly for a F/D² ratio of 5 

kgf/mm². This suggests some application limits for the used simulation and GTN model, as previously 

verified for the Von Mises stress. 

Table 13 summarizes the data for the F/D² ratios of 10 and 5 kgf/mm². 

Table 13 - Mean Brinell hardness number for both F/D² ratios, for all the tested porosity percentages. 

 Porosity 

F/D² ratio 0% 5% 10% 

10 76.03 ± 2.86 68.23 ± 5.10 56.38 ± 3.48 

5 68.37 ± 6.89 60.36 ± 1.62 43.53 ± 16.40 

 

Higher values of BHN are observed for a F/D² ratio of 10 kgf/mm², for all the tested porosity percentages. 

For high applied loads (F/D² ratio of 10 kgf/mm²), the indenter diameter has little influence on the BHN 

of a porous copper body. 

 

• Pile-up and sink-in effects 
 

Figure 46 shows the final indentation imprints that remained in the material after the hardness test. The 

horizontal normalized distance from the symmetry axis to the end of the partition’s edge is represented 

by the ratio r/R, while the ratio y/R represents the normalized distance from the initial indenter’s top to 

the edge of the square partition.  

The simulations results show that only pile-up occurs. The amout of pile-up decreased with porosity. 

When a sample is indented, material flows according to the path of least resistance. The region 



56 

 

immedeatly around the indenter will flow more easily outwards. When the indented material is porous, 

the voids are closed through plastic deformation. This way the pile-up effect is compensated by the 

sample densification. 

 

 

Figure 46 - Indentation imprints on the sample after the hardness test. F/D² ratios of 10 and 5 kgf/mm² were tested, as 

well as three porosity percentages (0, 5 and 10%). 

 

From Figure 46 it is observed that for a F/D² ratio of 10 kgf/mm² a higher indentation depth is achieved. 

The indentation depth increases when porosity increases. 
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• Summary 
 

This study was carried out to evaluate the influence that the load/indenter’s size ratio has on BHN. For 

a 10 kgf/mm² F/D² ratio, the Von Mises stress at the end of the indentation step decreases when the 

relative density decreases, since there is less material to support the applied load. When the indenter 

size increases so does the Von Mises stress at the end of the indentation step. This is more 

preponderant for low porosity bodies. At the end of the removal step, the Von Mises stress decreases 

when relative density decreases. For a 5 kgf/mm² F/D² ratio, irregular variations are observed for a 

relative density of 0.9. No trend was observed for this value of F/D² when relative density decreased. 

This suggests that the model has application limits for lower applied loads at high porosity contents 

(10%). 

At a F/D² ratio of 10 kgf/mm², the indenter’s size has little influence on the BHN. It is observed that for 

0% and 5% porosity there is a difference of 10 BHN between the two tested F/D² ratios. Under 5kgf/mm² 

and for 10% porosity the model shows low data consistency, thus suggesting that the GTN model has 

limitation for these conditions, as already mentioned.  

Only pile-up effects were observed, for all the simulations. It has more influence in the BHN 

measurement for less porous materials, since for high porosity bodies (10% porosity) the pile-up effect 

is compensated by the void compaction during indentation. 
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6. Conclusions and further work 

 

In this section work’s conclusions are presented along with suggestions for further work. 

 

6.1. Powder Spheroidization 
 

This work studies the influence of temperature, copper-graphite ratio (CGR), graphite powder size, 

applied stress and time on powder spheroidization. 

Graphite powder size influence on spheroidization could not be assessed because not enough 

significant samples could be retrieved from the separation process. 

The particle’s shape of all the observed samples changed after the spheroidization process. Due to a 

high standard deviation, it is not possible to conclude the influence of each parameter on the 

spheroidization process. 

Separation of copper and graphite powders was not feasible using only water as suspension medium 

and sonication. A hydrochloric aqueous solution was instead tested as a separation medium. This 

method effectively separates the two powders, but also modifies the particles morphology, because 

copper is corroded in the presence of chlorine ions. 

Some samples exhibited particles with cubes on their surfaces after the separation procedure. No similar 

results were found in literature, thus further word on this topic is suggested to understand this 

occurrence.  

The estimated shape factor for the initial dendritic powder was 2.67±0.54. A best shape factor of 

1.55±0.46 is suggested for test carried out at 1100ºC for 30 minutes, under low applied stress with 

graphite KS4. 

 

6.2. Simulations 
 

Hardness test of porous copper bodies was simulated using a FEM approach. The Gurson-Tvergaard-

Needleman (GTN) material model was used to simulate the porous body. The GTN and the Johnson-

Cook models were matched against each other, and a good correlation was found for a fully dense 

material. Quadrangular elements were chosen for the body mesh since those were found to adapt more 

easily to the body deformation than triangular elements. 

The influence of porosity and the load/indenter’s size ratio, F/D², on Brinell hardness number, BHN, was 

studied. BHN decreases linearly with relative density for all tested loads. Equations (13) to (15) are 

proposed to describe the BHN variation with relative density. Equation (16), , 𝐵𝐻𝑁 = 74.9 ∙
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(𝐹/𝐷2)ℎ
−0.065

− 187.7 ∙ 𝑉𝑉𝐹 ∙ (𝐹/𝐷2)ℎ
−0.215

, is proposed to describe the variation of BHN with VVF, for 

any given F/D² ratio. 

The Von Mises Stress, the equivalent plastic strain, the volume void fraction and the volume void fraction 

growth all present a parabolic dependence with relative density. 

Von Mises stress decreases with decreasing relative density, since for the same volume there is less 

material to support the applied load. The equivalent plastic strain, EPS, maintains the same trend with 

relative density for all the applied loads. Higher loads induce higher values of EPS. 

For increasing porosity, the volume void fraction, VVF, and the volume void fraction growth, VVFG, 

present the lowest value for a higher applied load, since there is more compaction due to higher plastic 

deformation. 

Two F/D² ratios, 10 kgf/mm² and 5kgf/mm², were used to study the influence of this parameter and of 

the indenter size on BHN. For a F/D² ratio of 10 kgf/mm², the indenter’s size has little influence on BHN. 

For 0% and 5% porosity, the difference between the two tested F/D² ratios is approximately 7.8 BHN 

(11.4%). For 5kgf/mm² and 10% porosity the model shows low data consistency, suggesting that the 

developed model has limitation for these conditions. 

The pile-up, up flow of material around the indentation periphery, is present as a result of the FEM 

experiments. Results show that pile-up effect is more significant for low porosity samples. For higher 

porosities, the void compaction compensates this effect. Higher F/D² ratios increase the pile-up height. 

The created model provided more consistent results for simulations with both high diameters and F/D² 

ratios for all the tested variables. 

 

6.3. Further work 

Copper powder spheroidization was not completely successful. To better investigate this process’s 

capabilities the following suggestions are proposed: 

• Sieve the samples to spheroidize particles within a narrow powder distribution size; 

• Test spheroidization with graphite flakes of smaller dimensions; 

• Develop a method to separate copper from graphite without altering the particle’s morphology; 

• Carry out particle size analysis after separation with Coulter equipment; 

• Study the formation of cubes on the surface of oxidized copper particles. 

The finite element computational model can be further developed and tested with the following 

suggestions: 

• Carry out experimental porosity tests on sintered copper bodies with spherical particles; 

• Determine hardness values for sintered copper bodies with controlled porosity to correlate 

experimental data with the FEM simulation; 



61 

 

  



62 

 

 

 

 

  



63 

 

7. References 
 

[1] V. V Konchits, M. Braunovic, and N. K. Myshkin, “Fundamentals of Electrical Contacts,” 2006. 

[2] ASM International Handbook, “Properties and selection: Nonferrous alloys and special-purpose 

materials,” ASM Met. Handb., vol. 2, p. 1300, 1990. 

[3] H. Dai, S. Wang, G. Zhu, and P. Zeng, “A new route for manufacturing monodispersed 

spherical copper particles for electronic applications,” Mater. Lett., vol. 118, pp. 173–175, 2014. 

[4] C. M. Lewandowski, N. Co-investigator, and C. M. Lewandowski, “Powder Metal Technologies 

and Applications,” ASM Int. Mater. Park. OH, vol. 7, p. 2762, 2015. 

[5] J. M. Capus, Metal Powders. Elsevier Advanced Technology, 2005. 

[6] G. S. Upadhyaya, Powder Metallurgy Technology. Cambridge International Science Publishing, 

1997. 

[7] V. Folea and E. Cahill, “Metallurgy made in and for Europe - The perspective of producers and 

end-users roadmap,” 2014. 

[8] R. DeFrain and C. Mumau, “Considerations for Metal Powders used in Additive Manufacturing,” 

in OMTEC 2017, 2017. 

[9] M. Boz and M. Hasheminiasari, “The effect of process parameters on copper powder particle 

size and shape produced by electrolysis method,” Steel Compos. Struct., vol. 15, no. 2, pp. 

151–162, 2013. 

[10] P. Atkins and J. Paula, Physical chemistry. Oxford University Press, 2006. 

[11] I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, “Surface tension of liquid metals and alloys-

Recent developments,” Adv. Colloid Interface Sci., vol. 159, no. 2, pp. 198–212, 2010. 

[12] A. Adamson and A. Gast, Physical Chemistry Of Surfaces. Wiley, 1997. 

[13] T. Young, “An Essay on the Cohesion of Fluids,” Philos. Trans. R. Soc. London, vol. 95, pp. 

65–87, 1805. 

[14] G. Bracco and B. Holst, Surface science techniques, vol. 51, no. 1. 2013. 

[15] C. Lei, H. Huang, Y. Huang, Z. Cheng, S. Tang, and Y. Du, “In-situ de-wetting assisted 

fabrication of spherical Cu-Sn alloy powder via the reduction of mixture metallic oxides,” 

Powder Technol., vol. 301, pp. 356–359, 2016. 

[16] K. Takagi, S. Masuda, H. Suzuki, and A. Kawasaki, “Preparation of Monosized Copper Micro 

Particles by Pulsated Orifice Ejection Method,” Mater. Trans., vol. 47, no. 5, pp. 1380–1385, 

2006. 



64 

 

[17] Z. Spârchez, “Fabrication of metal powders having spherical shape particles (an overview),” 

Adv. Mater. Res., vol. 23, pp. 95–98, 2007. 

[18] F. Nilsén, I. Aaltio, Y. Ge, T. Lindroos, and S. P. Hannula, “Characterization of Gas Atomized 

Ni-Mn-Ga Powders,” Mater. Today Proc., vol. 2, pp. S879–S882, 2015. 

[19] R. I. L. Howells, G. R. Dunstan, and C. Moore, “Production of gas atomised metal powders and 

their major industrial uses,” Powder Metall., vol. 31, no. 4, 1988. 

[20] Z. Cheng, C. Lei, H. Huang, S. Tang, and Y. Du, “The formation of ultrafine spherical metal 

powders using a low wettability strategy of solid-liquid interface,” Mater. Des., vol. 97, pp. 324–

330, 2016. 

[21] C. Lei, H. Huang, Z. Cheng, S. Tang, and Y. Du, “Mono-disperse spherical Cu-Zn powder 

fabricated via the low wettability of liquid/solid interface,” Appl. Surf. Sci., vol. 357, pp. 167–

171, 2015. 

[22] C. Lei, H. Huang, Z. Cheng, S. Tang, and Y. Du, “Fabrication of spherical Fe-based magnetic 

powders via the in situ de-wetting of the liquid-solid interface,” RSC Adv., vol. 6, no. 5, pp. 

3428–3432, 2016. 

[23] C. Lei, H. Huang, Z. Cheng, S. Tang, and Y. Du, “Mono-disperse spherical Cu-Zn powder 

fabricated via the low wettability of liquid/solid interface,” Appl. Surf. Sci., vol. 357, pp. 167–

171, 2015. 

[24] J. Abrahamson, “The surface energies of graphite,” Carbon N. Y., vol. 11, no. 4, pp. 337–362, 

1973. 

[25] B. J. Keene, “Review of data for the surface tension of pure metals,” Int. Mater. Rev., vol. 38, 

no. 4, pp. 157–192, 1993. 

[26] P. D. Ownby and J. Liu, “Surface energy of liquid copper and single-crystal sapphire and the 

wetting behavior of copper on sapphire,” J. Adhes. Sci. Technol., vol. 2, no. 1, pp. 255–269, 

1988. 

[27] D. A. Mortimer and M. Nicholas, “The wetting of carbon by copper and copper alloys,” J. Mater. 

Sci., vol. 5, no. 2, pp. 149–155, 1970. 

[28] G. A. López and E. J. Mittemeijer, “The solubility of C in solid Cu,” Scr. Mater., vol. 51, no. 1, 

pp. 1–5, 2004. 

[29] J. N. Reddy, “An Introduction to the Finite Element Method.” p. 684, 1993. 

[30] M. Deville, R. Michel, and B. Michel, Numerical Modeling in Materials Science and 

Engineering. 2003. 

[31] ASTM International, “Standard Test Method for Brinell Hardness of Metallic Materials 1,” 

ASTM, vol. E10-15, pp. 1–32, 2014. 



65 

 

[32] ASM Handbook Committee, “Mechanical Testing and Evaluation,” in ASM Handbook, vol. 8, 

2000, p. 2235. 

[33] T. H. Courtney, Mechanical behavior of materials. 2000. 

[34] A. Demir and F. O. Sonmez, “Prediction of Brinell Hardness Distribution in Cold Formed Parts,” 

J. Eng. Mater. Technol., vol. 126, no. 4, p. 398, 2004. 

[35] P. Grau and G. Berg, “Meyer´s hardness law and its relation to other measures of ball 

hardness tests,” Cryst. Res. Technol., vol. 32, no. 1, pp. 149–154, 1997. 

[36] Y. Tirupataiah and G. Sundararajan, “On the constraint factor associated with the indentation of 

work-hardening materials with a spherical ball,” Metall. Trans. A, vol. 22, no. 10, pp. 2375–

2384, 1991. 

[37] A. K. Bhattacharya and W. D. Nix, “Finite element simulation of indentation experiments,” Int. J. 

Solids Struct., vol. 24, no. 9, pp. 881–891, 1988. 

[38] Z. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: 

Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, 2016. 

[39] A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—

Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Technol., vol. 99, no. 1, 

pp. 2–15, 1977. 

[40] Z. Chen, X. Wang, N. Brandon, and A. Atkinson, “Analysis of spherical indentation of porous 

ceramic films,” J. Eur. Ceram. Soc., vol. 37, no. 3, pp. 1031–1038, 2016. 

[41] M. Sabzevari, R. J. Teymoori, and S. A. Sajjadi, “FE modeling of the compressive behavior of 

porous copper-matrix nanocomposites,” Mater. Des., vol. 86, pp. 178–183, 2015. 

[42] V. Tvergaard, “Influence of voids on shear band instabilities under plane strain conditions,” Int. 

J. Fract., vol. 17, no. 4, pp. 389–407, 1981. 

[43] Beckman Coulter Inc., “Coulter LS series, Product Manual,” Tecdoc Pn 4237214Ea, no. 1. 

2011. 

[44] M. Hasegawa, “Ellingham Diagram,” in Treatise on Process Metallurgy, vol. 1, Elsevier Ltd., 

2013, pp. 507–516. 

[45] F. N. Ponnamperuma, M. T. Cayton, and R. S. Lantin, “Dilute hydrochloric acid as ab 

extractant for available zinc, copper ans boron in rice soils,” Plant Soil, vol. 61, no. 1981, pp. 

297–310, 1981. 

[46] B. Beverskog and I. Puigdomenech, “Pourbaix diagrams for the system copper-chlorine at 5–

100 °C,” no. April, 1998. 

[47] E. M. Sherif, “Corrosion Behavior of Copper in 0 . 50 M Hydrochloric Acid Pickling Solutions 



66 

 

and its Inhibition by 3-Amino-1 , 2 , 4-triazole,” Corrosion, vol. 7, pp. 1884–1897, 2012. 

[48] G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various 

strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 

1985. 

[49] T. Seixas, “Development and modeling of mechanical alloying for production of copper matrix 

composite powders reinforced with alumina and graphite,” Instituto Superior Técnico, 2016. 

[50] Granta Design, “CES EduPack 2015.” 2015. 

[51] G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large 

strains, high strain rates and high temperatures,” 7th International Symposium on Ballistics. pp. 

541–547, 1983. 

[52] D. Systèmes, “Abaqus Analysis User’s Guide,” in Abaqus v6.14 Documentation, 2014. 

[53] D. Systèmes, “Abaqus/CAE User’s Guide,” in Abaqus v6.14 Documentation, 2014. 

[54] P.-L. Larsson, S. Biwai_, and B. Storakers, “Analysis of Cold and Hot Isostatic Compaction of 

Spherical Particles,” Acta nzatw, vol. 44, no. 9, pp. 3655–3666, 1996. 

[55] S. Hao and W. Brocks, “The Gurson-Tvergaard-Needleman-model for rate and temperature-

dependent materials with isotropic and kinematic hardening,” Comput. Mech., vol. 20, no. 1–2, 

pp. 34–40, 2014. 

[56] M. Morehead, Y. Huang, and K. Ted Hartwig, “Machinability of ultrafine-grained copper using 

tungsten carbide and polycrystalline diamond tools,” Int. J. Mach. Tools Manuf., vol. 47, no. 2, 

pp. 286–293, 2007. 

[57] ASTM Int., “Standard Test Methods for Tension Testing of Metallic Materials 1,” Astm, no. C, 

pp. 1–27, 2009. 

[58] W. Callister and D. Rethwisch, Materials science and engineering: an introduction, vol. 94. 

2007. 

[59] S.-H. Kim, E. Jeon, and D. Kwon, “Determining Brinell Hardness From Analysis of Indentation 

Load-Depth Curve Without Optical Measurement,” J. Eng. Mater. Technol., vol. 127, no. 1, p. 

154, 2005. 

 

 


